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What is variational
learning?

® Some models are hard to train because it is
hard to compute the probability
distribution over the hidden units given the
visible units

® |nstead of computing that distribution, we
can compute a simpler one

® Finding the best simple distribution is a
calculus of variations problem



Comparison to other
ideas

® RBMs are hard to train because the
partition function is hard to compute. That’s

a different kind of difficulty.

® Some approximate learning techniques give
you a stochastic but unbiased estimate of

the gradient.

® With variational learning, there’s no
stochasticity, but there is bias.You optimize
a different objective function, exactly.




Example: Binary Sparse
Coding

® |et’'s make a simple model of images
® Suppose we have an image, vector v

® Suppose we think images are made by
adding up a bunch of edges, the columns of

\'A%

® Suppose we choose each edge
independently to include in the image




Example

Input image Map of where to add each
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Probabilistic definition

If h; is 1, the edge is included in the image.
Choose the edges independently of each other:

p(hi = 1) = o(b;)

We can add up the edges with a matrix multiply:

Wh

To get a smooth distribution over images v, we add some Gaussian noise:

p(v|h)=N(v|Wh,I)




Energy-Based Model

By multiplying all of the p(h;) and p(v | h) together we get:
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Maximum likelihood

To train the model, we want to maximize the log likelihood.

We do this by following the derivatives of logp(v) :
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This is exactly the same as training an RBM, but with a new E(h,v) and Z.




Negative phase

® The negative phase was the only hard part
of training the RBM.

® For the RBM, Z is intractable, and we
approximate the gradients of log Z by
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Negative phase

= HzU(—bz)HJ 2T

SO

log Z = Z log(1 + exp(b; ——Zlog27r

Easy and cheap!



Positive Phase

The positive phase is expensive:

d
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The expectation requires computing p(h | v).
For RBMs, this is easy. But for binary sparse

coding, even drawing samples is hard!




p(h|v) is complicated

p(h | v) o exp (bTh— %Hv—WhH%)
® Hidden units must
1 1 2 T 1 T T
compete to explain the w4 o Wh — KW Wh)
iInput

X exp (bTh + 0T Wh — %hTWTWh)

® |f every hidden unit with a
positive dot product turns
; . exp(b;h;) exp(vI W.;h;)
on, our reconstruction = N, exp(SWT W, hihy)
Wh COUId aCtua”)’ Every h; interacts with every h;!
overshoot v

This means we can’t normalize the distribution

over each h; separately from the others.




Comparison to RBM

S &

PRBM h V) PBSC h V)
PRBM h|V PBSC(hIV)

PEO




Let’s simplify things

® p(h|v) is just plain too hard to work with

® Let’s make a new distribution q(h)

° We want q(h) to be simple. It should be
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Enforcing simplicity

® One way to make sure that q(h) is simple is
to constrain it to factorize:

q(h) = IL;q(h;)

® Using this particular constraint for
variational learning is usually called the
mean field approximation.

® This makes q(h) have a graph with no
edges. Constraining q(h) to have some
specific graph is called a structured
variational approximation.




Variational lower

bound
What if instead of

maximizing log p(v) we
maximize a lower bound
on it?

L(v,Q)=log p(v)-KL(q(h)||p(h|v))
<= log p(v)
because the KL divergence is
never negative.

When KL(q(h)||p(h]v)) is small, gq(h) resembles
p(h|v) and the bound is tight!




Properties of L

L(v,q)=log p(v) - KL(q(h) || p(h|v)) seems
like something arbitrary, that | just picked

because it is obviously <= log p(v)
When p=q, KL=0 so L=log p(v)
Turns out to be tractable
Depends only on q(h), not p(h|v)

Only one term depends on the model
parameters:

Eh~q(n) logp(h, v)




The variational
approach

® Variational inference: Find q(h) by solving

q(h) = argmin, KL (q(h)||p(h | v))

subject to q(h) = IL;q(h;)

® Variational learning: Alternate between
running variational inference to update g
and maximizing log p(v) - KL(q(h)||p(h]v))




Binary sparse coding
example

® For binary sparse coding, any legal q(h) can
be represented as

where q(h; = 1)

and h; € [0,1] is an optimization parameter




Zero gradient solution

We can solve the minimization problem

min; K L (g(h) [p(h | v))

just by algebra, by solving

Vi KL(q(h)|p(h) |v) =0

for h.




Fixed point equations

® Unfortunately, there is no closed form
solution for the point where the whole
gradient is zero.

® |nstead, we can repeatedly pick one variable
and set its gradient to zero, by solving

9 KL (W) p(h | v)) = 0

Oh;

® Eventually, the whole gradient will be zero.




Fixed point update

® After doing a bunch of calculus and
algebra, we get that the fixed point update
IS

2
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® |t looks a lot like p(h|v) in an RBM, but now
the different hidden units get to inhibit each
other.




Parallel updates

® These equations just say how to update
onhe equation at a time

® What if you want to update several?

° Updatlng each varlable to |ts |nd|V|duaIIy

2



Overshooting
visualization

2.4+




Diagnosing Variational
Model Problems

® Most important technical skill as a
researcher, engineer, or consultant is
deciding what to try next.

® Probabilistic methods are nice because you
can isolate failures of inference from
failures of learning or failures of
representation

® VWhat are some tests you could do to verify
that variational inference is working?




Example Unit Tests

Fixed point update sets a derivative of the KL to 0
At convergence, all derivatives are near 0
The KL decreases across updates

BSC/S3C: with orthogonal weights, a single update
drives the KL to 0 (can’t test if the KL is O, because
that involves computing p(v))

When using damping, monitor the KL after each
iteration. This can detect problems with your
damping schedule.




Continuous variables

® This was for discrete h, where q(h) can be
described by a vector

® VWhat about f ti h, wh WE
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Calculus of variations

We can define a function f that maps a
vector x to some real number f(x)

Using calculus, we can solve for the x
where the gradient is 0 to minimize f(x)

We can define a functional F that maps a
function f to some real number F[f]

Using calculus of variations, we can solve for
the f that minimizes F[f]




Calculus of variations
for variational inference

® |n variational inference,
® q(h) is our function
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Euler-Lagrange
equations

The Euler-Lagrange equations state that if

Fif) = [ 6 (@), £ (),2) do

then F'may be minimized by solving

0G d (8G
o7 = is (ar)




Applications of Euler-
Lagrange

® We can use the Euler-Lagrange equation to
solve for the minimum of a functional

® When f is a probability distribution, we
need to also add a Lagrange multiplier to
make sure f is normalized

® You can use this to prove stuff like that the
Gaussian distribution has the highest
entropy of any distribution with fixed
variance v




General Structured
Variational Inference

® Using Euler-Lagrange and Lagrange
multipliers to enforce that q(h) integrates
to |, we can solve the minimization for
general p(h,s) and partitions of q:

If we split A into disjoint groups, then the group

with indices in set S has

q(hs) x exp (Ep_gnqlogp(h,v))

where h_g is all of the variables not in this group.




More complicated
structures

® You could also imagine making q(h) have a
richer structure

® chain
® tree

® any structure for which expectations of
log p(h,s) are tractable

® |t doesn’t have to be a partition. But | don’t
cover that here.



Example: Spike and Slab
Sparse Coding
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Variational Inference
for S3C

ming Di (Q(h, s)[|P(h, s | v))
Q(h, s) = 1;Q(hi, si)

= N (s | hidi, (o + W, W)™ H)

® The fact that Q(s) is Gaussian is *not* hand
designed. That comes out of the Euler-
Lagrange equations! Neat!




Optimization

® Euler-Lagrange only tells us the functional
form of the answer

® Ve still need to use fixed point iteration to
solve for the mean of each variable




Fast optimization lets us do object
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Inference helps when
labels are scarce

CIFAR-10 Learning Curve
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Transfer Learning
Challenge

Won the “NIPS 201 | Workshop on
Challenges in Hierarchical Learning:
Transfer Learning Challenge”... without
using transfer learning

Train on a large amount of unlabeled data

Optionally train on a medium amount of
labeled data, of other object categories

Train on just 5-20 examples per category
for 10 new categories, and test on those




Further reading

® Probabilistic Graphical Models: Principals and
Techniques by Daphne Koller and Nir Friedman.
Chapter ||

® Pattern Recognition and Machine Learning by
Christopher M. Bishop, Chapter 10.1 and
Appendix D

® “Scaling Spike-and-Slab Models for Unsupervised
Feature Learning” lan J. Goodfellow, Aaron
Courville,Yoshua Bengio. To appear in I[EEE TPAMI
special issue on deep learning. http://www-
etud.iro.umontreal.ca/~goodfeli/tpami.pdf




