
Variational Learning and
Variational Inference

Ian Goodfellow

What is variational
learning?

• Some models are hard to train because it is
hard to compute the probability
distribution over the hidden units given the
visible units

• Instead of computing that distribution, we
can compute a simpler one

• Finding the best simple distribution is a
calculus of variations problem

Comparison to other
ideas

• RBMs are hard to train because the
partition function is hard to compute. That’s
a different kind of difficulty.

• Some approximate learning techniques give
you a stochastic but unbiased estimate of
the gradient.

• With variational learning, there’s no
stochasticity, but there is bias. You optimize
a different objective function, exactly.

Example: Binary Sparse
Coding

• Let’s make a simple model of images

• Suppose we have an image, vector v

• Suppose we think images are made by
adding up a bunch of edges, the columns of
W

• Suppose we choose each edge
independently to include in the image

Example

Feature Extraction:Inference

Filters demonstrated here:

Infer E
Q
[h]

for each patch

32x32x3

27x27 of 6x6x3
27x27xN (N=1600 or 6000)

Input image Map of where to add each

Dictionary of edges

Feature Extraction:Inference

Filters demonstrated here:

Infer E
Q
[h]

for each patch

32x32x3

27x27 of 6x6x3
27x27xN (N=1600 or 6000)

Feature Extraction:Inference

Filters demonstrated here:

Infer E
Q
[h]

for each patch

32x32x3

27x27 of 6x6x3
27x27xN (N=1600 or 6000)

Probabilistic definition

Energy-Based Model

Maximum likelihood

Negative phase

• The negative phase was the only hard part
of training the RBM.

• For the RBM, Z is intractable, and we
approximate the gradients of log Z by
sampling

• For binary sparse coding, it is easy!

• Z is tractable, and so are the derivatives of
log Z

Negative phase

Easy and cheap!

Positive Phase

p(h|v) is complicated

• Hidden units must
compete to explain the
input

• If every hidden unit with a
positive dot product turns
on, our reconstruction
Wh could actually
overshoot v

Comparison to RBM
h1 h2

v1 v2

h3 h1 h2

v1 v2

h3

h1 h2 h3

h1

h2

h3

PRBM(h,v) PBSC(h,v)
PRBM(h|v) PBSC(h|v)

Let’s simplify things

• p(h|v) is just plain too hard to work with

• Let’s make a new distribution q(h)

• We want q(h) to be simple. It should be
cheap to compute expectations over q(h)

• We want q(h) to be close to p(h|v)
somehow

Enforcing simplicity
• One way to make sure that q(h) is simple is

to constrain it to factorize:

• Using this particular constraint for
variational learning is usually called the
mean field approximation.

• This makes q(h) have a graph with no
edges. Constraining q(h) to have some
specific graph is called a structured
variational approximation.

Variational lower
bound

Variational learning

● Approximate
intractable P(h|v) with
tractable Q(h)

● Use Q to construct a
lower bound on the
log likelihood

What if instead of
maximizing log p(v) we

maximize a lower bound
on it?

L(v,Q)=log p(v)-KL(q(h)||p(h|v))
<= log p(v)

because the KL divergence is
never negative.

When KL(q(h)||p(h|v)) is small, q(h) resembles
p(h|v) and the bound is tight!

Properties of L
• L(v,q)=log p(v) - KL(q(h) || p(h|v)) seems

like something arbitrary, that I just picked
because it is obviously <= log p(v)

• When p=q, KL=0 so L=log p(v)

• Turns out to be tractable

• Depends only on q(h), not p(h|v)

• Only one term depends on the model
parameters:

The variational
approach

• Variational inference: Find q(h) by solving

• Variational learning: Alternate between
running variational inference to update q
and maximizing log p(v) - KL(q(h)||p(h|v))

Binary sparse coding
example

• For binary sparse coding, any legal q(h) can
be represented as

•

Zero gradient solution

Fixed point equations

• Unfortunately, there is no closed form
solution for the point where the whole
gradient is zero.

• Instead, we can repeatedly pick one variable
and set its gradient to zero, by solving

• Eventually, the whole gradient will be zero.

Fixed point update
• After doing a bunch of calculus and

algebra, we get that the fixed point update
is

• It looks a lot like p(h|v) in an RBM, but now
the different hidden units get to inhibit each
other.

Parallel updates

• These equations just say how to update
one equation at a time

• What if you want to update several?

• Updating each variable to its individually
optimal value doesn’t reach the global
optimum. You have to scale back the step to
avoid overshooting.

Overshooting
visualization

Diagnosing Variational
Model Problems

• Most important technical skill as a
researcher, engineer, or consultant is
deciding what to try next.

• Probabilistic methods are nice because you
can isolate failures of inference from
failures of learning or failures of
representation

• What are some tests you could do to verify
that variational inference is working?

Example Unit Tests
• Fixed point update sets a derivative of the KL to 0

• At convergence, all derivatives are near 0

• The KL decreases across updates

• BSC/S3C: with orthogonal weights, a single update
drives the KL to 0 (can’t test if the KL is 0, because
that involves computing p(v))

• When using damping, monitor the KL after each
iteration. This can detect problems with your
damping schedule.

Continuous variables

• This was for discrete h, where q(h) can be
described by a vector

• What about for continuous h, where q(h) is
a function, aka a vector with uncountably
infinitely many elements?

• This is where calculus of variations comes in

Calculus of variations

• We can define a function f that maps a
vector x to some real number f(x)

• Using calculus, we can solve for the x
where the gradient is 0 to minimize f(x)

• We can define a functional F that maps a
function f to some real number F[f]

• Using calculus of variations, we can solve for
the f that minimizes F[f]

Calculus of variations
for variational inference

• In variational inference,

• q(h) is our function

• KL(q(h)||p(h|v)) is our functional

• We want to solve for the q(h) that
minimizes the KL

Euler-Lagrange
equations

Applications of Euler-
Lagrange

• We can use the Euler-Lagrange equation to
solve for the minimum of a functional

• When f is a probability distribution, we
need to also add a Lagrange multiplier to
make sure f is normalized

• You can use this to prove stuff like that the
Gaussian distribution has the highest
entropy of any distribution with fixed
variance v

General Structured
Variational Inference

• Using Euler-Lagrange and Lagrange
multipliers to enforce that q(h) integrates
to 1, we can solve the minimization for
general p(h,s) and partitions of q:

More complicated
structures

• You could also imagine making q(h) have a
richer structure

• chain

• tree

• any structure for which expectations of
log p(h,s) are tractable

• It doesn’t have to be a partition. But I don’t
cover that here.

Example: Spike and Slab
Sparse Coding

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding
Ian J. Goodfellow Aaron Courville Yoshua Bengio

Variational Inference
for S3C

• The fact that Q(s) is Gaussian is *not* hand
designed. That comes out of the Euler-
Lagrange equations! Neat!

Large-Scale Feature Learning With Spike-and-Slab Sparse Coding
Ian J. Goodfellow Aaron Courville Yoshua Bengio

Optimization

• Euler-Lagrange only tells us the functional
form of the answer

• We still need to use fixed point iteration to
solve for the mean of each variable

• I wrote a paper about a principled way of
doing this at medium speed and a hacky
way of doing this very fast on GPU last year

Fast optimization lets us do object
recognition

TPAMI SPECIAL ISSUE SUBMISSION UNDER REVIEW 9

Fig. 5. Our inference scheme enables us to extend
spike-and-slab modeling from small problems to the scale
needed for object recognition. Previous object recognition
work is from (Coates and Ng, 2011; Courville et al.,
2011b). Previous spike-and-slab work is from (Mohamed
et al., 2012; Zhou et al., 2009; Garrigues and Olshausen,
2008; Lücke and Sheikh, 2011; Titsias and Lázaro-
Gredilla, 2011).

For each inference scheme considered, we found the
fastest possible variant obtainable via a two-dimensional
grid search over ⌘h and either ⌘s in the case of the heuris-
tic method or the number of conjugate gradient steps to
apply per ŝ update in the case of the conjugate gradient
method. We used the same value of these parameters on
every pair of update steps. It may be possible to obtain
faster results by varying the parameters throughout the
course of inference.

For these timing experiments, it is necessary to make
sure that each algorithm is not able to appear faster
by converging early to an incorrect solution. We thus
replace the standard convergence criterion based on the
size of the change in the variational parameters with a
requirement that the KL divergence reach within 0.05 on
average of our best estimate of the true minimum value
of the KL divergence found by batch gradient descent.

All experiments were performed on an Nvidia Ge-
Force GTX-580.

The results are summarized in Fig. 7.

7 CLASSIFICATION RESULTS
Because S3C forms the basis of all further model de-
velopment in this line of research, we concentrate on
validating its value as a feature discovery algorithm.
We conducted experiments to evaluate the usefulness of
S3C features for supervised learning on the CIFAR-10
and CIFAR-100 (Krizhevsky and Hinton, 2009) datasets.
Both datasets consist of color images of objects such
as animals and vehicles. Each contains 50,000 train and

Fig. 6. Example filters from a dictionary of over 8,000
learned on full 32x32 images.

Fig. 7. The inference speed for each method was com-
puted based on the inference time for the same set 100
examples from each dataset. The heuristic method is
consistently faster than the conjugate gradient method.
The conjugate gradient method is slowed more by prob-
lem size than the heuristic method is, as shown by the
conjugate gradient method’s low speed on the CIFAR-
100 full image task. The heuristic method has a very low
cost per iteration but is strongly affected by the strength
of explaining-away interactions–moving from CIFAR-100
full images to CIFAR-100 patches actually slows it down
because the degree of overcompleteness increases.

10,000 test examples. CIFAR-10 contains 10 classes while
CIFAR-100 contains 100 classes, so there are fewer la-
beled examples per class in the case of CIFAR-100.

For all experiments, we used the same overall proce-
dure as Coates and Ng (2011) except for feature learn-
ing. CIFAR-10 consists of 32 ⇥ 32 images. We train our
feature extractor on 6⇥6 contrast-normalized and ZCA-
whitened patches from the training set (this preprocess-
ing step is not necessary to obtain good performance
with S3C; we included it primarily to facilitate compar-
ison with other work). At test time, we extract features
from all 6 ⇥ 6 patches on an image, then average-pool
them. The average-pooling regions are arranged on a
non-overlapping grid. Finally, we train an L2-SVM with
a linear kernel on the pooled features.

Inference helps when
labels are scarceTPAMI SPECIAL ISSUE SUBMISSION UNDER REVIEW 10

Fig. 8. Semi-supervised classification accuracy on sub-
sets of CIFAR-10. Thresholding, the best feature extractor
on the full dataset, performs worse than sparse coding
when few labels are available. S3C improves upon sparse
coding’s advantage.

Sheet1

Page 1

Model Validation accuracyTest Accuracy Error
K-means+L 54.8 1
S3C+P 53.7 1
S3C+3 51.3
SC+3 50.6
OMP-1+3 48.7

K-means+L

S3C+P

S3C+3

SC+3

OMP-1+3

44 46 48 50 52 54 56

CIFAR-100 Results

Validation accuracy

Test Accuracy

Fig. 9. CIFAR-100 classification accuracy for various
models. As expected, S3C outperforms SC (sparse cod-
ing) and and OMP-1. S3C with spatial pyramid pooling
is near the state-of-the-art method, which uses a learned
pooling structure.

7.1 CIFAR-10

We use CIFAR-10 to evaluate our hypothesis that S3C is
similar to a more regularized version of sparse coding.

Coates and Ng (2011) used 1600 basis vectors in all
of their sparse coding experiments. They post-processed
the sparse coding feature vectors by splitting them into
the positive and negative part for a total of 3200 features
per average-pooling region. They average-pool on a 2⇥2

grid for a total of 12,800 features per image (i.e. each
element of the 2 ⇥ 2 grid averages over a block with
sides d(32 � 6 + 1)/2e or b(32 � 6 + 1)/2c). We used
EQ[h] as our feature vector. Unlike the output of sparse
coding, this does not have a negative part, so using a
2 ⇥ 2 grid we would have only 6,400 features. In order
to compare with similar sizes of feature vectors we used

a 3⇥3 pooling grid for a total of 14,400 features (i.e. each
element of the 3 ⇥ 3 grid averages over 9 ⇥ 9 locations)
when evaluating S3C. To ensure this is a fair means of
comparison, we confirmed that running sparse coding
with a 3⇥3 grid and absolute value rectification performs
worse than sparse coding with a 2 ⇥ 2 grid and sign
splitting (76.8% versus 77.9% on the validation set).

We tested the regularizing effect of S3C by training the
SVM on small subsets of the CIFAR-10 training set, but
using features that were learned on patches drawn from
the entire CIFAR-10 train set. The results, summarized
in Figure 8, show that S3C has the advantage over both
thresholding and sparse coding for a wide range of
amounts of labeled data. (In the extreme low-data limit,
the confidence interval becomes too large to distinguish
sparse coding from S3C).

On the full dataset, S3C achieves a test set accuracy of
78.3± 0.9 % with 95% confidence. Coates and Ng (2011)
do not report test set accuracy for sparse coding with
“natural encoding” (i.e., extracting features in a model
whose parameters are all the same as in the model used
for training) but sparse coding with different parameters
for feature extraction than training achieves an accuracy
of 78.8 ± 0.9% (Coates and Ng, 2011). Since we have
not enhanced our performance by modifying parameters
at feature extraction time these results seem to indicate
that S3C is roughly equivalent to sparse coding for
this classification task. S3C also outperforms ssRBMs,
which require 4,096 basis vectors per patch and a 3 ⇥ 3

pooling grid to achieve 76.7±0.9% accuracy. All of these
approaches are close to the best result, using the pipeline
from Coates and Ng (2011), of 81.5% achieved using
thresholding of linear features learned with OMP-1.
These results show that S3C is a useful feature extractor
that performs comparably to the best approaches when
large amounts of labeled data are available.

7.2 CIFAR-100
Having verified that S3C features help to regularize a
classifier, we proceed to use them to improve perfor-
mance on the CIFAR-100 dataset, which has ten times
as many classes and ten times fewer labeled examples
per class. We compare S3C to two other feature extrac-
tion methods: OMP-1 with thresholding, which Coates
and Ng (2011) found to be the best feature extractor
on CIFAR-10, and sparse coding, which is known to
perform well when less labeled data is available. We
evaluated only a single set of hyperparameters for S3C.
For sparse coding and OMP-1 we searched over the same
set of hyperparameters as Coates and Ng (2011) did:
{0.5, 0.75, 1.0, 1.25, 1.25} for the sparse coding penalty
and {0.1, 0.25, 0.5, 1.0} for the thresholding value. In
order to use a comparable amount of computational
resources in all cases, we used at most 1600 hidden units
and a 3⇥ 3 pooling grid for all three methods. For S3C,
this was the only feature encoding we evaluated. For SC
(sparse coding) and OMP-1, which double their number

Transfer Learning
Challenge

• Won the “NIPS 2011 Workshop on
Challenges in Hierarchical Learning:
Transfer Learning Challenge”... without
using transfer learning

• Train on a large amount of unlabeled data

• Optionally train on a medium amount of
labeled data, of other object categories

• Train on just 5-20 examples per category
for 10 new categories, and test on those

Further reading
• Probabilistic Graphical Models: Principals and

Techniques by Daphne Koller and Nir Friedman.
Chapter 11

• Pattern Recognition and Machine Learning by
Christopher M. Bishop, Chapter 10.1 and
Appendix D

• “Scaling Spike-and-Slab Models for Unsupervised
Feature Learning” Ian J. Goodfellow, Aaron
Courville, Yoshua Bengio. To appear in IEEE TPAMI
special issue on deep learning. http://www-
etud.iro.umontreal.ca/~goodfeli/tpami.pdf

